Skip to contents

Wrapper function for gene-by-gene association testing of RNA-seq data

Usage

dear_seq(
  exprmat = NULL,
  object = NULL,
  covariates = NULL,
  variables2test,
  sample_group = NULL,
  weights_var2test_condi = (which_test != "permutation"),
  cov_variables2test_eff = NULL,
  which_test = c("permutation", "asymptotic"),
  which_weights = c("loclin", "voom", "none"),
  n_perm = 1000,
  progressbar = TRUE,
  parallel_comp = TRUE,
  nb_cores = parallel::detectCores(logical = FALSE) - 1,
  preprocessed = FALSE,
  gene_based_weights = FALSE,
  bw = "nrd",
  kernel = c("gaussian", "epanechnikov", "rectangular", "triangular", "biweight",
    "tricube", "cosine", "optcosine"),
  transform = TRUE,
  padjust_methods = c("BH", "BY", "holm", "hochberg", "hommel", "bonferroni"),
  lowess_span = 0.5,
  R = NULL,
  adaptive = TRUE,
  max_adaptive = 64000,
  homogen_traj = FALSE,
  na.rm_dearseq = TRUE
)

Arguments

exprmat

a numeric matrix of size G x n containing the raw RNA-seq counts or preprocessed expressions from n samples for G genes. Default is NULL, in which case object must not be NULL.

object

an object that can be either a SummarizedExperiment, an ExpressionSet, a DESeqDataSet, or a DGEList. Default is NULL, in which case exprmat must not be NULL.

covariates
  • If exprmat is specified as a matrix: then covariates must be a numeric matrix of size n x p containing the model covariates for n samples (design matrix). Usually, its first column is the intercept (full of 1s).

  • If object is specified: then covariates must be a character vector of length p containing the colnames of the design matrix given in object.

If covariates is NULL (the default), then it is just the intercept.

variables2test
  • If exprmat is specified as a matrix: a numeric design matrix of size n x K containing the K variables to be tested.

  • If object is specified: then variables2test must be a character vector of length K containing the colnames of the design matrix given in object.

sample_group

a vector of length n indicating whether the samples should be grouped (e.g. paired samples or longitudinal data). Coerced to be a factor. Default is NULL in which case no grouping is performed.

weights_var2test_condi

a logical flag indicating whether heteroscedasticity weights computation should be conditional on both the variables to be tested variables2test and on the covariates, or on covariates alone. Default is TRUE for the asymptotic test (in which case conditional means are estimated conditionally on both variables2test and covariates), and FALSE for the permutation test (in which case conditional means are estimated conditionally on only the covariates).

cov_variables2test_eff

a matrix of size K x K containing the covariance matrix of the K random effects. Only used if homogen_traj is FALSE. Default assume diagonal correlation matrix, i.e. independence of random effects.

which_test

a character string indicating which method to use to approximate the variance component score test, either 'permutation' or 'asymptotic'. Default is 'permutation'.

which_weights

a character string indicating which method to use to estimate the mean-variance relationship weights. Possibilities are 'loclin', 'voom' or 'none' (in which case no weighting is performed). Default is 'loclin'. See sp_weights and voom_weights for details.

n_perm

the number of perturbations. Default is 1000

progressbar

logical indicating wether a progressBar should be displayed when computing permutations (only in interactive mode).

parallel_comp

a logical flag indicating whether parallel computation should be enabled. Only Linux and MacOS are supported, this is ignored on Windows. Default is TRUE.

nb_cores

an integer indicating the number of cores to be used when parallel_comp is TRUE. Default is parallel::detectCores(logical=FALSE) - 1.

preprocessed

a logical flag indicating whether the expression data have already been preprocessed (e.g. log2 transformed). Default is FALSE, in which case y is assumed to contain raw counts and is normalized into log(counts) per million.

gene_based_weights

a logical flag used for 'loclin' weights, indicating whether to estimate weights at the gene-level, or rather at the observation-level. Default is FALSE, which is what it should be for gene-wise analysis.

bw

a character string indicating the smoothing bandwidth selection method to use. See bandwidth for details. Possible values are 'ucv', 'SJ', 'bcv', 'nrd' or 'nrd0'.

kernel

a character string indicating which kernel should be used. Possibilities are 'gaussian', 'epanechnikov', 'rectangular', 'triangular', 'biweight', 'tricube', 'cosine', 'optcosine'. Default is 'gaussian' (NB: 'tricube' kernel corresponds to the loess method).

transform

a logical flag used for 'loclin' weights, indicating whether values should be transformed to uniform for the purpose of local linear smoothing. This may be helpful if tail observations are sparse and the specified bandwidth gives suboptimal performance there. Default is TRUE.

padjust_methods

multiple testing correction method used if genesets is a list. Default is 'BH', i.e. Benjamini-Hochberg procedure for controlling the FDR. Other possibilities are: 'holm', 'hochberg', 'hommel', 'bonferroni' or 'BY' (for Benjamini-Yekutieli procedure).

lowess_span

smoother span for the lowess function, between 0 and 1. This gives the proportion of points in the plot which influence the smooth at each value. Larger values give more smoothness. Only used if which_weights is 'voom'. Default is 0.5.

R

library.size (optional, important to provide if preprocessed = TRUE). Default is NULL

adaptive

a logical flag indicating whether adaptive permutation should be performed. Default is TRUE

max_adaptive

The maximum number of permutations considered. Default is 64000

homogen_traj

a logical flag indicating whether trajectories should be considered homogeneous. Default is FALSE in which case trajectories are not only tested for trend, but also for heterogeneity.

na.rm_dearseq

logical: should missing values in y (including NA and NaN) be omitted from the calculations? Default is TRUE.

Value

A list with the following elements:

  • which_test: a character string carrying forward the value of the 'which_test' argument indicating which test was perform (either 'asymptotic' or 'permutation').

  • preprocessed: a logical flag carrying forward the value of the 'preprocessed' argument indicating whether the expression data were already preprocessed, or were provided as raw counts and transformed into log-counts per million.

  • n_perm: an integer carrying forward the value of the 'n_perm' argument indicating the number of perturbations performed (NA if asymptotic test was performed).

  • genesets: carrying forward the value of the 'genesets' argument defining the gene sets of interest (NULL for gene-wise testing).

  • pval: computed p-values. A data.frame with one raw for each each gene set, or for each gene if genesets argument is NULL, and with 2 columns: the first one 'rawPval' contains the raw p-values, the second one contains the FDR adjusted p-values (according to the 'padjust_methods' argument) and is named 'adjPval'.

References

Gauthier M, Agniel D, Thiébaut R & Hejblum BP (2020). dearseq: a variance component score test for RNA-Seq differential analysis that effectivelycontrols the false discovery rate, NAR Genomics and Bioinformatics, 2(4):lqaa093. doi:10.1093/nargab/lqaa093

Examples


#Monte-Carlo estimation of the proportion of DE genes over `nsims`
#simulations under the null

#number of runs
nsims <- 2 #100
res <- numeric(nsims)
for(i in 1:nsims){
 n <- 1000 #number of genes
 nr=5 #number of measurements per subject (grouped data)
 ni=50 #number of subjects
 r <- nr*ni #number of measurements
 t <- matrix(rep(1:nr), ni, ncol=1, nrow=r) # the variable to be tested
 sigma <- 0.5
 b0 <- 1

 #under the null:
 b1 <- 0

 #create the matrix of gene expression
 y.tilde <- b0 + b1*t + rnorm(r, sd = sigma)
 y <- t(matrix(rnorm(n*r, sd = sqrt(sigma*abs(y.tilde))), ncol=n, nrow=r) +
          matrix(rep(y.tilde, n), ncol=n, nrow=r))

 #no covariates
 x <- matrix(1, ncol=1, nrow=r)

 #run test
 #asymptotic test with preprocessed grouped data
 res_genes <- dear_seq(exprmat=y, covariates=x, variables2test=t,
                       sample_group=rep(1:ni, each=nr),
                       which_test='asymptotic',
                      which_weights='none', preprocessed=TRUE)

 #proportion of raw p-values>0.05
 mean(res_genes$pvals[, 'rawPval']>0.05)

 #quantiles of raw p-values
 quantile(res_genes$pvals[, 'rawPval'])

 #proportion of raw p-values<0.05 i.e. proportion of DE genes
 res[i] <- mean(res_genes$pvals[, 'rawPval']<0.05)
 message(i)
}
#> 1
#> 2

#results
mean(res)
#> [1] 0.12

if(interactive()){
b0 <- 1
#under the null:
b1 <- 0

#create the matrix of gene expression
y.tilde <- b0 + b1*t + rnorm(r, sd = sigma)
y <- t(matrix(rnorm(n*r, sd = sqrt(sigma*abs(y.tilde))), ncol=n, nrow=r) +
      matrix(rep(y.tilde, n), ncol=n, nrow=r))

#run test
#asymptotic test with preprocessed grouped data
res_genes <- dear_seq(exprmat=y, covariates=x, variables2test=t,
                   sample_group=rep(1:ni, each=nr),
                   which_weights='none', preprocessed=TRUE)

#results
summary(res_genes$pvals)
}